extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24)⋊1C22 = C24⋊6D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):1C2^2 | 288,446 |
(C3×C24)⋊2C22 = D24⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):2C2^2 | 288,443 |
(C3×C24)⋊3C22 = C3×C8⋊D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):3C2^2 | 288,679 |
(C3×C24)⋊4C22 = C24⋊1D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4+ | (C3xC24):4C2^2 | 288,442 |
(C3×C24)⋊5C22 = C24⋊3D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):5C2^2 | 288,765 |
(C3×C24)⋊6C22 = S3×D24 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4+ | (C3xC24):6C2^2 | 288,441 |
(C3×C24)⋊7C22 = C24⋊4D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):7C2^2 | 288,445 |
(C3×C24)⋊8C22 = C3×S3×D8 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):8C2^2 | 288,681 |
(C3×C24)⋊9C22 = D8×C3⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):9C2^2 | 288,767 |
(C3×C24)⋊10C22 = C3×Q8⋊3D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):10C2^2 | 288,685 |
(C3×C24)⋊11C22 = C24⋊7D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):11C2^2 | 288,771 |
(C3×C24)⋊12C22 = C24⋊8D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):12C2^2 | 288,768 |
(C3×C24)⋊13C22 = C3×D8⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):13C2^2 | 288,682 |
(C3×C24)⋊14C22 = S3×C24⋊C2 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):14C2^2 | 288,440 |
(C3×C24)⋊15C22 = C24⋊9D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):15C2^2 | 288,444 |
(C3×C24)⋊16C22 = C3×S3×SD16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):16C2^2 | 288,684 |
(C3×C24)⋊17C22 = SD16×C3⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):17C2^2 | 288,770 |
(C3×C24)⋊18C22 = C32×C8⋊C22 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):18C2^2 | 288,833 |
(C3×C24)⋊19C22 = S32×C8 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):19C2^2 | 288,437 |
(C3×C24)⋊20C22 = S3×C8⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):20C2^2 | 288,438 |
(C3×C24)⋊21C22 = C24⋊D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):21C2^2 | 288,439 |
(C3×C24)⋊22C22 = C3×S3×M4(2) | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24):22C2^2 | 288,677 |
(C3×C24)⋊23C22 = M4(2)×C3⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 72 | | (C3xC24):23C2^2 | 288,763 |
(C3×C24)⋊24C22 = C2×C32⋊5D8 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):24C2^2 | 288,760 |
(C3×C24)⋊25C22 = C6×D24 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24):25C2^2 | 288,674 |
(C3×C24)⋊26C22 = C2×C24⋊2S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):26C2^2 | 288,759 |
(C3×C24)⋊27C22 = C6×C24⋊C2 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24):27C2^2 | 288,673 |
(C3×C24)⋊28C22 = D8×C3×C6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):28C2^2 | 288,829 |
(C3×C24)⋊29C22 = S3×C2×C24 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24):29C2^2 | 288,670 |
(C3×C24)⋊30C22 = C2×C8×C3⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):30C2^2 | 288,756 |
(C3×C24)⋊31C22 = C2×C24⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):31C2^2 | 288,757 |
(C3×C24)⋊32C22 = C6×C8⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24):32C2^2 | 288,671 |
(C3×C24)⋊33C22 = SD16×C3×C6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):33C2^2 | 288,830 |
(C3×C24)⋊34C22 = M4(2)×C3×C6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24):34C2^2 | 288,827 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C24).1C22 = D12.4D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).1C2^2 | 288,459 |
(C3×C24).2C22 = Dic12⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).2C2^2 | 288,449 |
(C3×C24).3C22 = C3×C8.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).3C2^2 | 288,680 |
(C3×C24).4C22 = C24.3D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4- | (C3xC24).4C2^2 | 288,448 |
(C3×C24).5C22 = C24.5D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).5C2^2 | 288,766 |
(C3×C24).6C22 = C32⋊2D16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).6C2^2 | 288,193 |
(C3×C24).7C22 = C3⋊D48 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4+ | (C3xC24).7C2^2 | 288,194 |
(C3×C24).8C22 = D24.S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).8C2^2 | 288,195 |
(C3×C24).9C22 = C32⋊3SD32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4- | (C3xC24).9C2^2 | 288,196 |
(C3×C24).10C22 = C24.49D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4+ | (C3xC24).10C2^2 | 288,197 |
(C3×C24).11C22 = C32⋊2Q32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).11C2^2 | 288,198 |
(C3×C24).12C22 = C32⋊3Q32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4- | (C3xC24).12C2^2 | 288,199 |
(C3×C24).13C22 = C3×C3⋊D16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).13C2^2 | 288,260 |
(C3×C24).14C22 = C3×D8.S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).14C2^2 | 288,261 |
(C3×C24).15C22 = C3×C8.6D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).15C2^2 | 288,262 |
(C3×C24).16C22 = C3×C3⋊Q32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).16C2^2 | 288,263 |
(C3×C24).17C22 = C32⋊7D16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).17C2^2 | 288,301 |
(C3×C24).18C22 = C32⋊8SD32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).18C2^2 | 288,302 |
(C3×C24).19C22 = C32⋊10SD32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).19C2^2 | 288,303 |
(C3×C24).20C22 = C32⋊7Q32 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 288 | | (C3xC24).20C2^2 | 288,304 |
(C3×C24).21C22 = S3×Dic12 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4- | (C3xC24).21C2^2 | 288,447 |
(C3×C24).22C22 = C24.23D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).22C2^2 | 288,450 |
(C3×C24).23C22 = D24⋊7S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4- | (C3xC24).23C2^2 | 288,455 |
(C3×C24).24C22 = D6.3D12 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4+ | (C3xC24).24C2^2 | 288,456 |
(C3×C24).25C22 = D24⋊5S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).25C2^2 | 288,458 |
(C3×C24).26C22 = C3×D8⋊3S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).26C2^2 | 288,683 |
(C3×C24).27C22 = C3×S3×Q16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).27C2^2 | 288,688 |
(C3×C24).28C22 = C3×D24⋊C2 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).28C2^2 | 288,690 |
(C3×C24).29C22 = C24.26D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).29C2^2 | 288,769 |
(C3×C24).30C22 = Q16×C3⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).30C2^2 | 288,774 |
(C3×C24).31C22 = C24.28D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).31C2^2 | 288,776 |
(C3×C24).32C22 = C3×D4.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).32C2^2 | 288,686 |
(C3×C24).33C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).33C2^2 | 288,772 |
(C3×C24).34C22 = C24.35D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).34C2^2 | 288,775 |
(C3×C24).35C22 = C3×Q16⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).35C2^2 | 288,689 |
(C3×C24).36C22 = D6.1D12 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).36C2^2 | 288,454 |
(C3×C24).37C22 = D12.2D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).37C2^2 | 288,457 |
(C3×C24).38C22 = C3×Q8.7D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).38C2^2 | 288,687 |
(C3×C24).39C22 = C24.40D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).39C2^2 | 288,773 |
(C3×C24).40C22 = C32×C8.C22 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).40C2^2 | 288,834 |
(C3×C24).41C22 = S3×C3⋊C16 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).41C2^2 | 288,189 |
(C3×C24).42C22 = C24.60D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).42C2^2 | 288,190 |
(C3×C24).43C22 = C24.61D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 96 | 4 | (C3xC24).43C2^2 | 288,191 |
(C3×C24).44C22 = C24.62D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).44C2^2 | 288,192 |
(C3×C24).45C22 = C24.63D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).45C2^2 | 288,451 |
(C3×C24).46C22 = C24.64D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).46C2^2 | 288,452 |
(C3×C24).47C22 = C24.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).47C2^2 | 288,453 |
(C3×C24).48C22 = C3×D12.C4 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 48 | 4 | (C3xC24).48C2^2 | 288,678 |
(C3×C24).49C22 = C24.47D6 | φ: C22/C1 → C22 ⊆ Aut C3×C24 | 144 | | (C3xC24).49C2^2 | 288,764 |
(C3×C24).50C22 = C32⋊5D16 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).50C2^2 | 288,274 |
(C3×C24).51C22 = C6.D24 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).51C2^2 | 288,275 |
(C3×C24).52C22 = C32⋊5Q32 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 288 | | (C3xC24).52C2^2 | 288,276 |
(C3×C24).53C22 = C2×C32⋊5Q16 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 288 | | (C3xC24).53C2^2 | 288,762 |
(C3×C24).54C22 = C3×D48 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | 2 | (C3xC24).54C2^2 | 288,233 |
(C3×C24).55C22 = C3×C48⋊C2 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | 2 | (C3xC24).55C2^2 | 288,234 |
(C3×C24).56C22 = C3×Dic24 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | 2 | (C3xC24).56C2^2 | 288,235 |
(C3×C24).57C22 = C3×C4○D24 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 48 | 2 | (C3xC24).57C2^2 | 288,675 |
(C3×C24).58C22 = C6×Dic12 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24).58C2^2 | 288,676 |
(C3×C24).59C22 = C24.78D6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).59C2^2 | 288,761 |
(C3×C24).60C22 = C32×D16 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).60C2^2 | 288,329 |
(C3×C24).61C22 = C32×SD32 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).61C2^2 | 288,330 |
(C3×C24).62C22 = C32×Q32 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 288 | | (C3xC24).62C2^2 | 288,331 |
(C3×C24).63C22 = Q16×C3×C6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 288 | | (C3xC24).63C2^2 | 288,831 |
(C3×C24).64C22 = S3×C48 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | 2 | (C3xC24).64C2^2 | 288,231 |
(C3×C24).65C22 = C3×D6.C8 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | 2 | (C3xC24).65C2^2 | 288,232 |
(C3×C24).66C22 = C6×C3⋊C16 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 96 | | (C3xC24).66C2^2 | 288,245 |
(C3×C24).67C22 = C3×C12.C8 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 48 | 2 | (C3xC24).67C2^2 | 288,246 |
(C3×C24).68C22 = C16×C3⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).68C2^2 | 288,272 |
(C3×C24).69C22 = C48⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).69C2^2 | 288,273 |
(C3×C24).70C22 = C2×C24.S3 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 288 | | (C3xC24).70C2^2 | 288,286 |
(C3×C24).71C22 = C24.94D6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).71C2^2 | 288,287 |
(C3×C24).72C22 = C24.95D6 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).72C2^2 | 288,758 |
(C3×C24).73C22 = C3×C8○D12 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 48 | 2 | (C3xC24).73C2^2 | 288,672 |
(C3×C24).74C22 = C32×C4○D8 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).74C2^2 | 288,832 |
(C3×C24).75C22 = C32×C8○D4 | φ: C22/C2 → C2 ⊆ Aut C3×C24 | 144 | | (C3xC24).75C2^2 | 288,828 |
(C3×C24).76C22 = C32×M5(2) | central extension (φ=1) | 144 | | (C3xC24).76C2^2 | 288,328 |